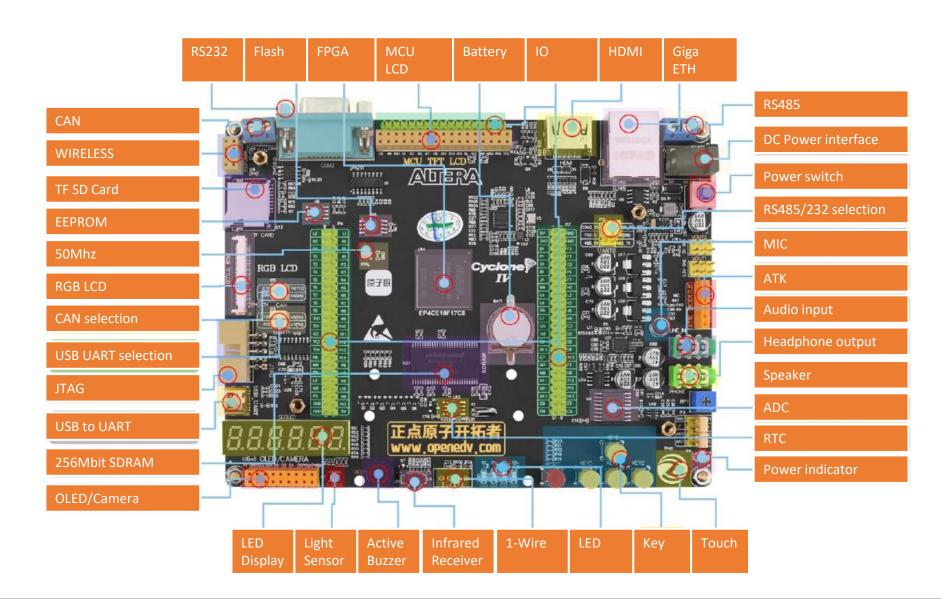

Overview

This development board is based on EP4CE10F17C8N, BGA256 package.


- Abundant interfaces. The board provides a rich set of standard peripheral interfaces, enabling convenient experimentation and development with various peripherals.
- Flexible design. The board adopts a core board plus baseboard structure, with many resources configurable to meet different usage scenarios. Two rows of 24x2 expansion ports are exposed along the edges, providing a total of 88 extended I/O pins.
- Sufficient resources. The board features 1 HDMI port, 1 RGB LCD interface, 1 Gigabit Ethernet port, 1 USB 2.0 SLAVE interface, and various interface chips to meet diverse application requirements.
- User-friendly design. All interfaces are clearly marked with silkscreen labels and outlined with frames for intuitive use. Frequently used peripherals are highlighted with larger silkscreen labels for easy identification. The interface layout is ergonomically designed for convenient access, and resources are rationally allocated to maximize utility.

Order Code

Order Code	Brand	Description
E05001-001	ALIENTEK	Intel/Altera EP4CE10F17C8N pioneer v2

Core Specifications:

- * **Main Control Chip:** EP4CE10F17C8N, **Package:** BGA256
- * **Crystal Oscillator:** 50MHz
- * **FLASH:** W25Q16, **Capacity:** 16Mbit (2MB)
- * **SDRAM:** W9825G6KH-6, **Capacity:** 256Mbit (32MB)
- * **EEPROM:** AT24C64, **Capacity:** 64Kbit (8KB)

Indicators & Basic Components:

- * 1 x Power Indicator (Blue)
- * 4 x Status LEDs (DS0~DS3: Red)
- * 1 x IR Receiver, bundled with a compact infrared remote control
- * 1 x High-Performance Audio Codec Chip: ES8388
- * 1 x Reset Button (can serve as a reset signal for FPGA program execution)
- * 4 x Function Buttons
- * 1 x Capacitive Touch Button
- 1 x Power Switch (controls power for the entire development board)

Sensors & Displays:

- * 1 x Ambient Light Sensor (Chip: AP3216C)
- * 1 x Standard 2.4/2.8/3.5/4.3/7-inch MCU TFT-LCD Interface (supports resistive/capacitive touchscreens)
- * 1 x Standard RGB TFT-LCD Interface
- * 1 x OLED/Camera Module Interface

Audio Components:

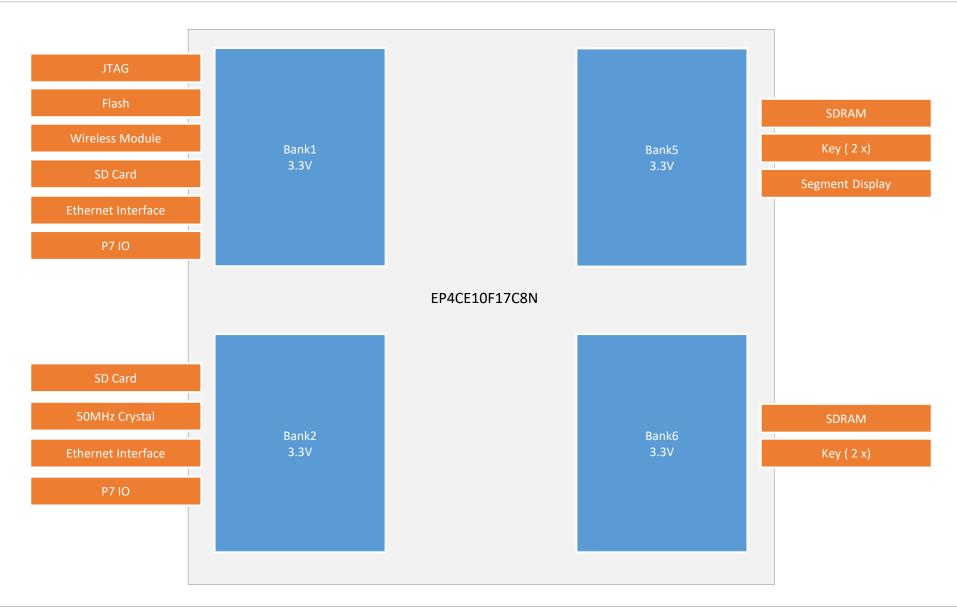
- * 1 x Microphone (MIC)
- * 1 x Audio Input Interface
- * 1 x Audio Output Interface
- * 1 x Small Speaker (on the back of the board)

Communication & Connectivity Interfaces:

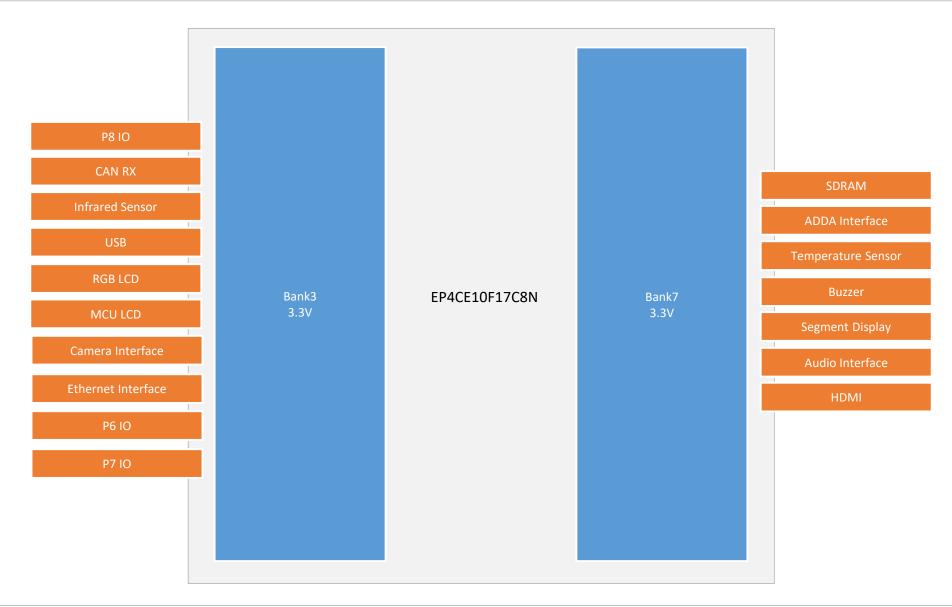
- * 1 x Wireless Module Interface (supports NRF24L01 wireless modules)
- * 1 x CAN Interface (Chip: TJA1050)
- * 1 x 485 Interface (Chip: TP3485)
- * 1 x RS232 Serial Port (Female) Interface (Chip: TP3232)
- * 1 x 1-Wire Interface (supports sensors like DS18B20/DHT11)
- * 1 x ATK Module Interface (supports Alpha & Omega Bluetooth/GPS/MPU6050/RGB LED modules)
- * 1 x USB Serial Port
- * 1 x SD Card Interface (on the front of the board)
- * 1 x Gigabit Ethernet Interface (Chip: YT8531)
- * 1 x HDMI Interface
- * 1 x Standard JTAG Debug/Download Port
- * 1 x RS232/RS485 Select Interface
- * 1 x USB Serial Port Select Interface
- * 1 x CAN Select Interface

Power & Expansion:

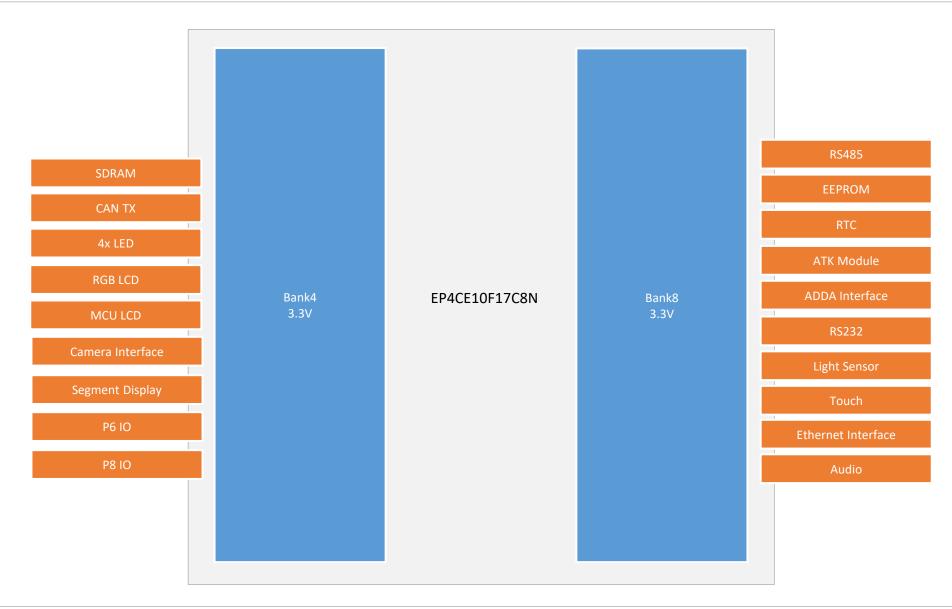
- * 1 x Set of Multi-function Ports (DAC/ADC/TPAD)
- * 1 x Set of 5V Power Supply/Input Ports
- * 1 x Set of 3.3V Power Supply/Input Ports
- * 1 x DC Power Input Interface (Input Voltage Range: DC 6~16V)
- * 1 x RTC Backup Battery Holder, includes battery (on the back of the board)


Additional ICs:

- * 1 x RTC Real-Time Clock (Chip: PCF8563)
- * 1 x ADC/DAC Conversion Chip (PCF8591)
- 1 x Active Buzzer


Expansion:

* Two 24x2 expansion ports, providing a total of 88 extended I/O pins (excluding power and ground)



1) CAN Interface

The Pioneer FPGA development board features an onboard CAN bus communication interface. The CAN interface connects to an external CAN bus via two ports: CANH and CANL. Please note: During CAN communication, CANH must be connected to CANH and CANL to CANL. Incorrect connections may result in communication failure!

2) WIRELESS Module Interface

The Pioneer FPGA development board includes a wireless module expansion interface. By inserting an NRF24L01 module into this interface, wireless communication can be achieved, enabling wireless functionality for the board. Please note that wireless communication requires two development boards and two wireless modules operating simultaneously. A single board or module alone cannot establish wireless communication.

3) SD Card Interface

The Pioneer FPGA development board is equipped with a standard SD card slot (compatible with TF cards), located on the back of the board. SD cards can be inserted and driven using SPI/SDIO protocols, meeting the needs for mass data storage.

4) Extended I/O Ports (Three Locations in Total)

The Pioneer FPGA development board features three sets of extended I/O ports: P6, P7, and P8. Among them, P6 and P7 use 2x24 pin headers to provide a total of 88 I/O pins (excluding power and ground). P8 uses a 1x16 pin header, sequentially providing 16 I/O pins from D0 to D15.

5) RGB TFT-LCD Interface

The Pioneer FPGA development board includes an RGB LCD interface, which can connect to various Alpha & Omega RGB LCD screen modules and supports touch functionality (both resistive and capacitive screens). To save I/O pins, the RGB565 format is adopted. While this reduces color depth, it conserves I/O resources, and the RGB565 data format is more universally compatible in programming.

6) 50MHz Crystal Oscillator

The Pioneer FPGA development board features a 50MHz crystal oscillator (XTAL). The clock signal generated by this oscillator serves as the fundamental clock source for the FPGA. All other required clock frequencies are derived from this base clock using a PLL (Phase-Locked Loop) or other frequency division methods.

7) CAN Selection Interface

The Pioneer FPGA development board includes a CAN communication selection interface (P5). When performing CAN communication experiments, jumper caps must be used to connect the pins: CTX to T12 (TX) and CRX to M6 (RX). When jumper caps are not installed, the N3 and M6 pins can also be used as extended I/O ports.

8) USB Serial Port Selection Interface

The Pioneer FPGA development board includes a USB serial port selection interface (P9). When conducting USB UART communication experiments, jumper caps must be used to connect the pins: TXD to N5 (RX) and RXD to M7 (TX). When jumper caps are not installed, the N5 and M7 pins can also be used as extended I/O ports.

9) JTAG Interface

The Pioneer FPGA development board features a standard 10-pin JTAG debug port. This JTAG port can be directly connected to an FPGA downloader (debugger) for programming or online debugging of the FPGA.

10) USB to Serial Port

The Pioneer FPGA development board features an onboard USB serial port (USB_232). This design addresses the declining availability of traditional serial ports on modern computers, especially laptops, which rarely include them. The integrated USB serial port facilitates convenient experimentation with USB UART communication. For flexibility, the corresponding pins are not directly connected on the board. Additionally, this USB port can supply power to the development board. However, its maximum current output is limited to 500mA. When performing experiments with higher power demands, such as LCD display or high-speed AD/DA applications, it is recommended to use the DC 6~16V power input interface.

11) SDRAM

The Pioneer FPGA development board is equipped with an SDRAM chip (U23), model W9825G6KH, with a capacity of 256Mbit (32MB). This ample memory easily handles various high-memory-demand scenarios, such as camera image data storage and audio recording data storage.

12) 6-Digit 7-Segment Display

The Pioneer FPGA development board includes a 6-digit common anode 7-segment display (SEGLED). This display provides a simple and intuitive way to show information, such as temperature values or light intensity.

13) Small Speaker

An 8Ω 2W small speaker (SPEAKER) is mounted on the back of the Pioneer FPGA development board and can be used for audio playback. Driven directly by the ES8388 audio codec, the speaker has a maximum output power of 0.9W.

14) OLED/Camera Module Interface

The Pioneer FPGA development board features an OLED/Camera module interface (P1). For OLED modules, align them to the left (leaving the two rightmost holes unoccupied). For camera modules (provided by Alpha & Omega), the connector will be fully populated. This interface enables experiments with various external modules.

15) Ambient Light Sensor

The Pioneer FPGA development board includes an ambient light sensor (U7), which can function as both an ambient light sensor and a proximity sensor. This allows the board to detect changes in ambient light and proximity distance, enabling features like automatic backlight adjustment similar to those found in smartphones.

16) Active Buzzer

The Pioneer FPGA development board features an active buzzer (BEEP) for generating simple alarm sounds or alerts.

17) IR Receiver

The Pioneer FPGA development board includes an IR receiver (U11), enabling infrared remote control functionality. This receiver can detect infrared signals from common remote controls, and users can even implement universal IR decoding. With appropriate applications, this receiver can also be used for data transmission.

18) RTC Real-Time Clock

The Pioneer FPGA development board features an onboard RTC real-time clock chip (U12), model PCF8563 from PHILIPS. This industrial-grade multifunctional clock/calendar chip supports alarm functions, timer functions, clock output, and interrupt output, enabling various complex timing services.

19) 1-Wire Interface

The Pioneer FPGA development board includes a 1-Wire interface (U9) composed of four gold-plated pin headers. It can connect to 1-Wire sensors such as DS18B20 and DHT11. When not in use, the sensors can be detached and utilized elsewhere, offering great flexibility and convenience.

20) Four LEDs

The Pioneer FPGA development board is equipped with four LEDs (DS0–DS3). These LEDs are sufficient for general applications and serve as an excellent aid for debugging by indicating program execution status.

21) Reset Button

The Pioneer FPGA development board includes a reset button (RESET), which can serve as a reset signal for FPGA program execution. Note that the default reset signal level is high, and it becomes low when the reset button is pressed.

22) Four Buttons

The Pioneer FPGA development board features four mechanical buttons (KEY0–KEY3) directly connected to the FPGA's I/O pins. These buttons can serve as input signals for human-computer interaction. The default state of all four button signals is high, and they become low when pressed.

23) Battery Interface

The Pioneer FPGA development board includes a power supply interface (BAT1) for the RTC real-time clock. This ensures the clock continues operating when the FPGA board is powered off, preventing the configured date and time from resetting to default values.

24) Touch Button

The Pioneer FPGA development board features a capacitive touch input button (TPAD). It operates based on the principle of capacitor charging and discharging to detect touch inputs.

25) Power Indicator

The Pioneer FPGA development board includes a blue LED (PWR) to indicate the power status. The LED lights up when the power is turned on and remains off otherwise. This LED allows users to verify the board's power status.

26) Multifunction Port

The Pioneer FPGA development board includes an interface (P3 & P4) composed of eight pin headers. This ingeniously designed port combines P3 and P4 to support multiple functions, including ADC sampling, DAC output, PWM DAC output, capacitive touch key detection, and DAC-ADC self-test. All these functions can be achieved simply by connecting a single jumper cap.

27) Digital-to-Analog/Analog-to-Digital Conversion

The Pioneer FPGA development board features a DAC/ADC conversion device (U27), model PCF8591. This chip integrates both ADC and DAC functionalities and communicates with the FPGA via the I²C bus interface.

28) Headphone Output Interface

The Pioneer FPGA development board includes an audio output interface (PHONE) for connecting 3.5mm headphones. When the ES8388 plays audio, users can listen through headphones plugged into this interface.

29) Audio Input Interface

The Pioneer FPGA development board includes an audio input interface (LINE_IN), which can connect to the headphone output of devices like computers or smartphones.

30) MIC (Microphone)

The Pioneer FPGA development board includes a microphone input (MIC), directly connected to the ES8388's recording input channel, enabling recording functionality.

31) ATK Module Interface

The Pioneer FPGA development board features a universal module interface (U5) compatible with modules developed by Alpha & Omega, such as GPS, Bluetooth, MPU6050, and full-color RGB LED modules. By plugging in the corresponding module, users can directly proceed with development. In the future, more modules compatible with this interface will be developed to enhance expandability.

32) 3.3V Power Input/Output

The Pioneer FPGA development board includes a set of 3.3V power input/output pin headers (2x3, VOUT1). These can supply 3.3V power to external devices or accept 3.3V power input to the board. This provides a convenient 3.3V power source (max current 500mA) for experiments.

33) 5V Power Input/Output

The Pioneer FPGA development board includes a set of 5V power input/output pin headers (2x3, VOUT2). These can supply 5V power to external devices or accept 5V power input to the board. When powered via USB, the maximum current is 500mA; when using an external power supply, it can reach up to 1000mA.

34) Power Switch

The Pioneer FPGA development board includes a power switch (K1) to control the board's power supply. When the switch is turned off, the entire board is powered down, and the power indicator (PWR) turns off accordingly.

35) DC 6-16V Power Input

The Pioneer FPGA development board features an external power input port (DC_IN) with a standard DC power jack. The board uses a DC-DC chip (MP2359) to provide efficient and stable 5V power. Thanks to the DC-DC chip, the board has a wide input voltage range, allowing users to easily find a suitable power supply (as long as the output is within DC 6–16V). For high-power consumption scenarios, such as using 4.3-inch/7-inch screens, Ethernet, or high-speed AD/DA, an external power supply is recommended to ensure sufficient current.

36) RS485 Interface

The Pioneer FPGA development board includes an RS485 bus interface (RS485), which connects to external 485 devices via two ports. Please note: For RS485 communication, A must connect to A and B to B; incorrect connections may cause communication failure!

37) Ethernet Interface (RJ45)

The Pioneer FPGA development board features a Gigabit Ethernet port (ETHNET) for network cable connection, enabling network communication. This port connects to the PHY chip (YT8531) on the board, supporting communication rates of 10Mbps, 100Mbps, and 1000Mbps.

38) RS232/485 Selection Interface

The Pioneer FPGA development board includes an RS232/RS485 selection interface (P2). This interface allows users to connect the FPGA pins to either the RS232 or RS485 module to meet different application requirements.

39) HDMI Interface

The Pioneer FPGA development board includes an HDMI interface (output only). It can connect to HDMI-compatible displays, allowing the FPGA to drive the display and show color bars, images, or video.

40) LCD Interface

The Pioneer FPGA development board features an MCU TFT-LCD module interface (16-bit parallel data), compatible with the full range of Alpha & Omega LCD modules, including 2.4-inch, 2.8-inch, 3.5-inch, 4.3-inch, and 7-inch MCU TFT-LCD modules, with support for resistive/capacitive touch.

41) FPGA (EP4CE10)

This is the core chip (U14) of the development board, model EP4CE10F17C8. This cost-effective chip features 10,320 logic elements, 414Kbits of embedded memory, 23 18×18 embedded multipliers, 2 general-purpose PLLs, 10 global clock networks, 8 user I/O banks, and up to 179 user I/Os.

42) Flash (W25Q16)

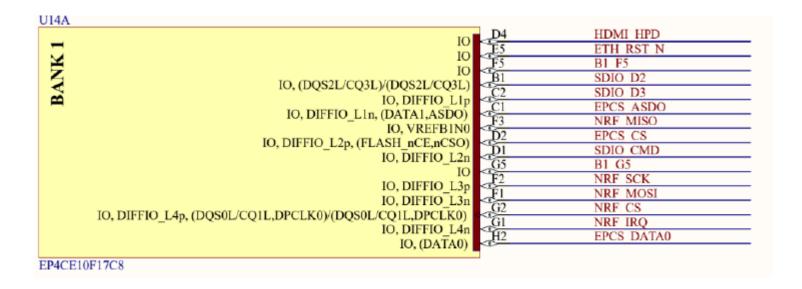
The Pioneer FPGA development board includes a Flash memory chip (U15). Modern large-scale FPGAs are typically based on SRAM architecture, meaning the program is lost after power-off. Therefore, after the FPGA is powered on, an external chip is required to quickly load the program into the FPGA hardware. This external chip must retain the stored program after power loss, serving as the FPGA's configuration chip. The configuration chip stores the FPGA program to ensure it continues functioning after a power cycle. The Pioneer FPGA development board uses the W25Q16 (fully compatible with the EPCS16 chip) as its configuration chip, with a storage capacity of 16Mbit (2MB).

44) RS232 Interface (Female)

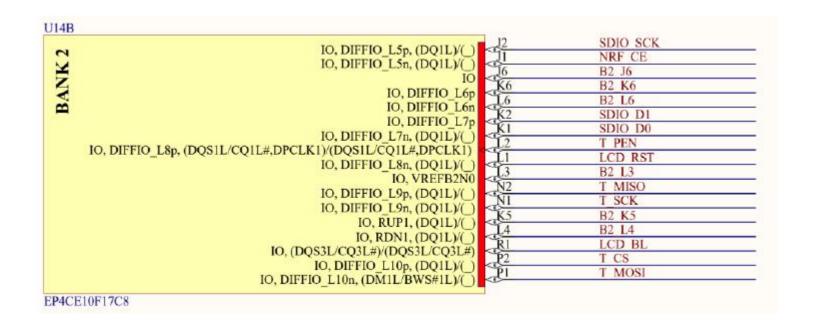
The Pioneer FPGA development board features an RS232 interface, connected externally via a standard DB9 female connector. This interface allows communication with computers or other devices equipped with serial ports, enabling serial communication functionality.

45) EEPROM (AT24C64)

The Pioneer FPGA development board includes an EEPROM chip (U6) with a capacity of 64Kbit (8KB). It is used to store critical data that must not be lost after power-off, such as system configuration parameters. This enables convenient and reliable non-volatile data storage.

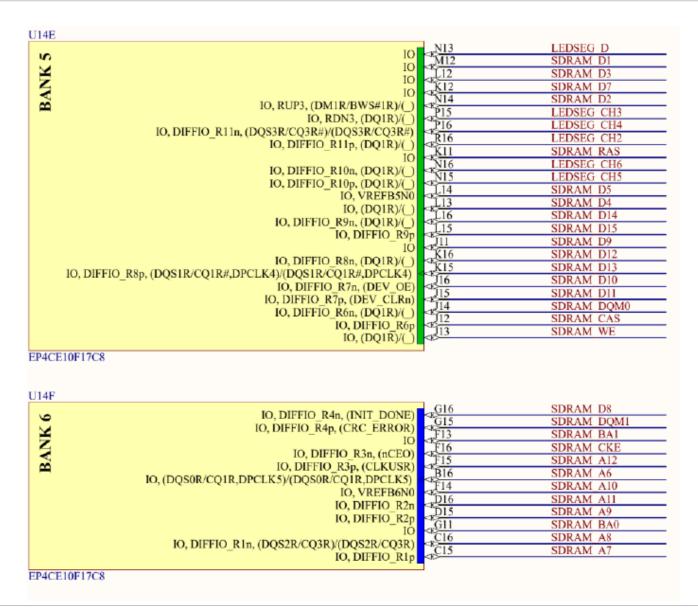


FPGA Core Chip


The Pioneer FPGA development board features the Cyclone IV E series EP4CE10F17C8N as its main control chip. This device offers significant advantages in power efficiency and cost-effectiveness. It contains 10,320 logic elements, 414Kbits of embedded memory resources, 23 embedded 18×18 multipliers, 2 general-purpose phase-locked loops (PLLs), 10 global clock networks, 8 user I/O banks, and up to 179 user I/O pins. Understanding the overall hardware resources of the device helps designers optimize their implementations based on available resources to achieve the best performance-to-cost ratio.

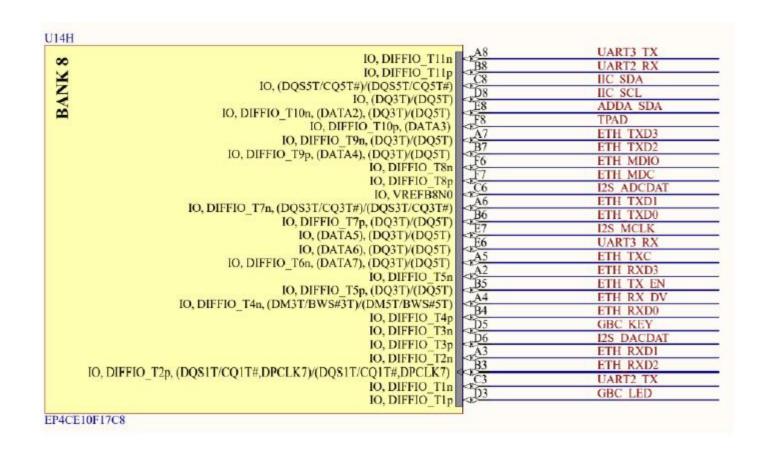
FPGA Bank Schematic

The onboard FPGA chip of the Pioneer board has a total of 256 I/O pins (with 179 available user I/O). Organizing this large number of I/O pins without structure would be highly impractical. Therefore, the FPGA manufacturer groups these I/O pins into separate blocks, known as I/O banks. The EP4CE10F17C8N contains 8 I/O banks, each of which can be powered by different voltage levels. The schematic diagram of the I/O banks is shown below:



14C	IO, DIFFIO B1p	N3	B3 N3	
<u>ო</u>		_P3	LCD VSYNC	MLCD RS
~	IO, DIFFIO_B1n, (DM3B/BWS#3B)/(DM5B/BWS#5B)	R3	LCD CLK	MLCD RD
BANK	IO, DIFFIO_B2p, (DQ3B)/(DQ5B) IO, DIFFIO_B2n	T3	LCD HSYNC	MLCD W
₹		T2	LCD DE	MLCD CS
-	IO, (DQS1B/CQ1B#,DPCLK2)/(DQS1B/CQ1B#,DPCLK2)	R4	LCD B3	MLCD D3
	IO, PLL1_CLKOUTp IO, PLL1_CLKOUTn	T4	LCD B4	MLCD D4
		N5	UART1 RX	
	IO, DIFFIO_B4p, (DQ3B)/(DQ5B)	N6	CMOS D5	
	IO, DIFFIO_B4n, (DQ3B)/(DQ5B)	M6	CAN RX	
	IO, (DQ3B)/(DQ5B) IO, VREFB3N0	P6	CMOS_D4	
		M7	UART1_TX	
	IO, DIFFIO_B5p, (DQS3B/CQ3B#)/(DQS3B/CQ3B#) IO, DIFFIO_B5n	K8 R5	B3 K8	
		R5	LCD_B1	MLCD_D1
	IO, DIFFIO_B6p, (DQ3B)/(DQ5B) IO, DIFFIO_B6n	Ţ5	LCD B2	MLCD D2
	IO, DIFFIO_B7p, (DQ3B)/(DQ5B)	R6	LCD_G5	MLCD_D1
	IO, DIFFIO_B7p, (DQ3B)/(DQ3B)	T6	LCD_B0	MLCD_D0
	IO, (DQ3B)/(DQ5B)	1.7	B3_L7	
		R7	LCD_G3	MLCD_D8
	IO, DIFFIO_B8p, (DQ3B)/(DQ5B) IO, DIFFIO_B8n, (DQS5B/CQ5B#)/(DQS5B/CQ5B#)	_T7	LCD G4	MLCD D9
	IO, DIFFIO_Boil, (DQS3B/CQ3B#)/(DQS3B/CQ3B#)	1.8	REMOTE IN	
	IO, DIFFIO B9n, (DM5B/BWS#5B)/(DM5B/BWS#5B)	M8	CMOS D3	
	IO, DIFFIO_B10p, (DQ5B)/(DQ5B)	N8	CMOS D2	
	IO, DIFFIO_B10n, (DQ5B)/(DQ5B)	P8	CMOS D1	
	IO, DIFFIO B11p	R8 T8	LCD G1	MLCD D6
	IO, DIFFIO B11n	18	LCD G2	MLCD D7
	C8			

4D	IO DIFFIO DIA-	R9 -19	LCD R4	MLCD DI
4	IO, DIFFIO_B12p		LCD G0	MLCD D5
4	IO, DIFFIO_B12n	K9	CMOS D0	
BAINK 4	IO, DIFFIO_B13p	19	CMOS RESET	
₹	IO, DIFFIO_B13n	M9 N9	CMOS HREF	
-	IO, DIFFIO B14p	N9	CMOS SCL	
	IO, DIFFIO_B14n, (DQ5B)/(DQ5B)	_R10	LCD R2	MLCD D
	IO, DIFFIO_B15p, (DQ5B)/(DQ5B)	T10	LCD R3	MLCD D
	IO, DIFFIO_B15n, (DQS4B/CQ5B)/(DQS4B/CQ5B)	R11	LCD R0	MLCD D1
	IO, DIFFIO_B16p, (DQ5B)/(DQ5B)	T11	LCD R1	MLCD D
	IO, DIFFIO_B16n	_R12	CMOS PWDN	
	IO, DIFFIO_B17p, (DQ5B)/(DQ5B)	T12	CAN TX	
	IO, DIFFIO_B17n, (DQ5B)/(DQ5B)	K10	SDRAM CS	
	IO, DIFFIO_B18p IO, DIFFIO_B18n	L10	CMOS_SDA	
	IO, (DQS2B/CQ3B)/(DQS2B/CQ3B)	L10	CMOS_VSYNC	
	IO, (DQS2B/CQ3B)/(DQS2B/CQ3B)	~P11	LEDSEG G	
	IO, DIFFIO B19p	R13	CMOS PCLK	
	IO, DIFFIO_B19n, (DQ5B)/(DQ5B)	T13	CMOS XCLK	
	IO, DIFFIO_B15II, (DQ3B)/(DQ3B) IO, RUP2	M10	LEDSEG E	
	IO, RDN2	NII	LEDSEG F	
	IO, DIFFIO B20p, (DQ5B)/(DQ5B)	T14	CMOS_D7	
IO D	IFFIO_B20n, (DQS0B/CQ1B,DPCLK3)/(DQS0B/CQ1B,DPCLK3)	T15	LEDSEG CH1	
10, D	IO	R14	CMOS D6	
	IO, DIFFIO B21p	Ĵ₽14	SDRAM D0	
	IO, DIFFIO B21n	J.11	SDRAM D6	
	IO, DIFFIO B22p	M11	LEDSEG_A	
	IO, DIFFIO B22p	N12	LEDSEG B	
	IO, DIFFIO_BZZII			



	IO, DIFFIO_T21n	-vC14	SDRAM A3
		1714	SDRAM A2
	IO, DIFFIO_T21p, (DQ5T)/(DQ5T)	D11	LED0
IO, DIFFIO_T20p, (I	IO, DIFFIO_T20n DQS0T/CQ1T,DPCLK6)/(DQS0T/CQ1T,DPCLK6)	1717	BEEP
10, DIFFIO_120p, (1		A13	I2S LRCK
	IO, DIFFIO_T19n	D13	I2S SCLK
	IO, DIFFIO_T19p, (DQ5T)/(DQ5T) IO, PLL2_CLKOUTn	A 1.4	SDRAM A4
	IO, PLL2_CLKOUTp	B14	SDRAM CLK
	IO, RUP4	E11	SDRAM A1
	IO, RDN4	-E10	LED2
	IO, DIFFIO_T18n, (DQ5T)/(DQ5T)	A12	HDMI FCLK N
	IO, DIFFIO_T18p, (DQ5T)/(DQ5T)	B12	HDMI FCLK P
	IO, DIFFIO_T17n, (DQ5T)/(DQ5T)	Äll	HDMI_FD0_N
	IO, DIFFIO_T17p, (DQ5T)/(DQ5T)	A11 B11 C11 F10	HDMI FD0 P
	IO, VREFB7N0	Ç11	LED1
	IO, DIFFIO_T16n	F10	1WIRE DQ
	IO, DIFFIO_T16p, (DQS2T/CQ3T)/(DQS2T/CQ3T)		LED3
	IO, DIFFIO_T15n	F11	SDRAM_A0
	IO, DIFFIO_T15p	/A 1.3	SDRAM A5
	IO, DIFFIO_T14n, (DQ5T)/(DQ5T)	A10	HDMI FD1 N
	IO, DIFFIO_T14p, (DQ5T)/(DQ5T)	A10 B10 C9	HDMI FD1 P
	IO, DIFFIO_T13n, (DQ5T)/(DQ5T)		LEDSEG C
IO. I	DIFFIO_T13p, (DM5T/BWS#5T)/(DM5T/BWS#5T)	D9	LEDSEG DOT
10,1	IO, (DQS4T/CQ5T)/(DQS4T/CQ5T)	E9	ADDA SCL
	IO, DIFFIO T12n	A9	HDMI FD2 N
	IO, DIFFIO_T12p		HDMI FD2 P

Revision History

Date	Revision	Change description
30/10/2025	1.0	Initial release