

Overview

DFRobot Gravity: MAX30102 heart rate and blood oxygen sensor module integrates the Maxim MAX30102 chip and an MCU heart rate and blood oxygen algorithm.

The MAX30102 uses PPG(PhotoPlethysmoGraphy) to measure data, which will be converted into heart rate and oximetry values when processed by the MCU, then output through I2C or UART, making the sensor easy to use and greatly reducing resource occupation of main controller. Meanwhile, the corresponding upper computer is provided to allow you to conveniently read data by a PC.

Note:

- The pressure may change when the finger is directly pressed down the sensor, which will affect the data output. So please try to fix the sensor on your finger.
- Wear the sensor on your finger and there is no difference in the direction of wearing.
- This product is not a professional medical instrument and should not be used as an auxiliary accessory in diagnosis and treatment.

Order Code

Order Code	Brand	Description
E36002-001	DFRobot	Gravity: MAX30102 PPG Heart Rate and Oximeter Sensor

Specification

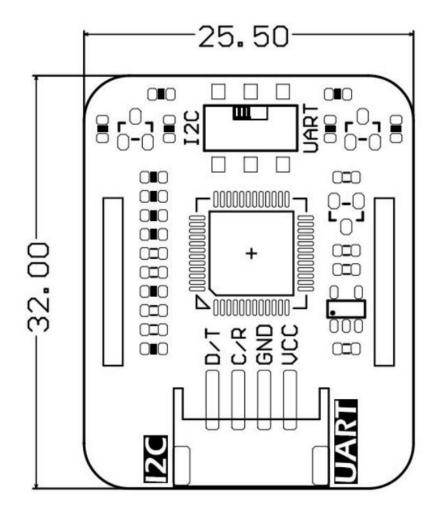
Power Supply Voltage: 3.3V/5V

Working Current: <15mA

Communication Method: I2C/UART

I2C Address: 0x57

• Serial Port Baud Rate: 9600

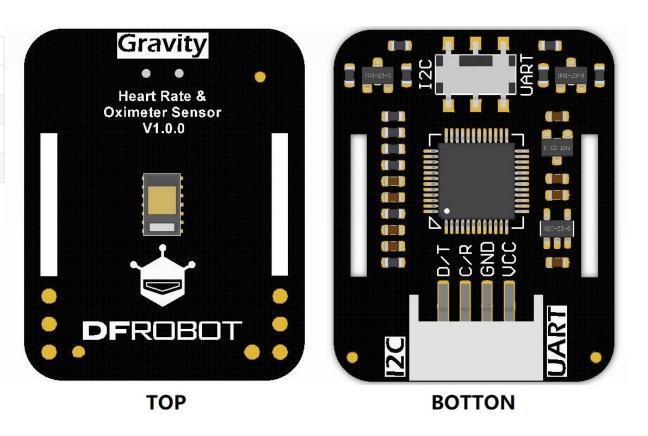

Operating Temperature Range: -40°C~85°C
 Product Size: 25.5×32mm/0.98×1.26inch

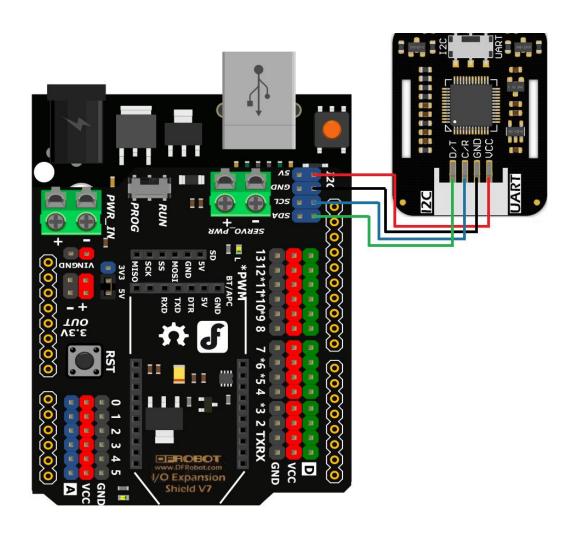
Application

- · Heart rate blood oxygen project
- Home heart rate oximeter
- Long-term heart rate and blood oxygen monitoring project

Feature

- Microcontroller with integrated algorithm
- Data can be read directly through the host computer

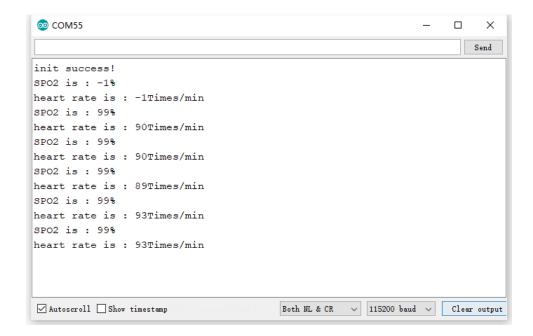

Wear Instruction


Board Instruction

Num	Label	Description
1	D/T	I2C Data Line/TX
2	C/T	I2C Clock Line/RX
3	GND	Power -
4	VCC	Power +

Connection Diagram

Tutorial


Sample Code 1 - Get the Heart Rate and Blood Oxygen Data

Obtain the heart rate blood oxygen value, start measuring the heart rate when the sensor's red light is on, the heart rate data is updated every 4 seconds, the sensor data can still be obtained within 4 seconds, but the data obtained during the data update period does not change.

Please pay attention to the position of the communication switch.

Please download the sample code

Expected result

API function

```
* @brief Get heart rate and oxygen saturation and store them into the structure sHeartbeatSPO2
* @param NULL
* @return No value returned
  void getHeartbeatSPO2();
* @brief Get the sensor board temp
* @param NULL
* @return Temp (unit: ℃)
  float getTemperature_C();
* @brief Sensor starts to collect data
* @param NULL
* @return NULL
  void sensorStartCollect();
* @brief Sensor stops collecting data
* @param NULL
* @return NULL
  void sensorEndCollect();
```


Modbus RTU protocols

Note: The communication interface uses UART

Transmit	From Adevice to Bdevice				
Functions	Bdevice Addess	Function Code	Register Address	Register Number	CRC Check
Get the Heart Rate and Blood Oxygen Data	0×20	0×03/Read	0×00 0×06	0×00 0×04	CRC_h CRC_l
Get the Temperature	0×20	0×03	0×00 0×0A	0×00 0×01	CRC_h CRC_l
Receive	Response from Bdevice				
Functions	Bdevice Addess	Function Code	Valid Bytes	Data	CRC Check
Get the Heart Rate and Blood Oxygen Data	0×20	0×03	0×08	SPO2(1byte) xx(1byte reseved) Heartbeat(4byte) xx(2byte reserved)	CRC_h CRC_l
Get the Temperature	0×20	0×03	0×02	Temp_h Temp_l	CRC_h CRC_l

Modbus RTU protocols

Set the Sensor	Transmit From Adevice				
Functions	Bdevice Addess	Function Code	Register Address	Register Number	CRC Check
Start to Collet Data	0×20	0×06	0×00 0×10	0×00 0×01	CRC_h CRC_I
Stop Colleting Data	0×20	0×06	0×00 0×10	0×00 0×02	CRC_h CRC_l
Set the Sensor	Response From Bdevice				
Functions	Bdevice Addess	Function Code	Valid Bytes	Data	CRC Check
Start to Collet Data	0×20	0×06	0×00 0×10	0×00 0×01	CRC_h CRC_l
Stop Colleting Data	0×20	0×06	0×00 0×10	0×00 0×02	CRC h CRC I

Modbus RTU protocols

CRC check

```
static uint16 t calculate CRC(uint8 t *data, uint8 t len)
  uint16_t crc = 0xFFFF;
  for( uint8 t pos = 0; pos < len; pos++)</pre>
    crc ^= (uint16 t)data[ pos ];
    for(uint8 t i = 8; i != 0; i--)
     if((crc & 0x0001) != 0){
        crc >>= 1;
        crc ^= 0xA001;
      }else{
        crc >>= 1;
  crc = ((crc & 0x00FF) << 8) | ((crc & 0xFF00) >> 8);
  return crc;
```


Documents

MAX30102 datasheet

Revision History

Date	Revision	Change description
30/10/2025	1.0	Initial release